Преобразователь электрической энергии

Современная наука объясняет существование электричества скоплениями зарядов противоположных знаков. В природе вырабатывается невероятное количество электричества. Силы трения в атмосфере создают огромные пространства из грозовых облаков. Между облаками, с поверхностью земли возникают напряжения в миллионы вольт. А несколько минут грозы с молниями эквивалентны по электрической мощности продолжительной работе большой электростанции.

Но молний может и не быть. Однако электроэнергия всё равно витает в пространстве между небом и землёй.

  • Очевидно, что напряжение это первый и основной параметр энергии электричества.

В природе существуют только медленно изменяющиеся и почти мгновенно исчезающие напряжения. Гроза постепенно набирает силу, зарядов от трения перемещающихся слоёв воздуха становится всё больше. Напряжение между облаками и поверхностью земли увеличивается.

Если движение воздушных масс в определённый момент прекратится, напряжение постепенно уменьшится. Если нет – разряд молнии моментально «обнулит» напряжение.

  • Очевидно, что электрический ток, который имеет вид молнии, является вторым параметром электрической энергии.

По мере развития науки люди научились моделировать атмосферные электрические процессы, придумав электростатическую, или как её называют иначе электрофорную машину:

Электрофорная машина

Эта машина стала первым преобразователем механической энергии в электроэнергию. Однако преобразование это не удалось сделать обратимым. Хотя машина и была источником напряжения и тока, проблема состояла в том, что сделать дальнейшие преобразования электрической энергии не получалось. Но со временем наука выявила ещё одну причину возникновения электрических зарядов. Не только трение, но и магнитное поле оказалось способным создавать электричество.

Это открытие оказалось полностью определённым развитием технологий. Когда появились металлическая проволока и постоянный магнит, взаимодействие которых в природе не существует, стало возможным открытие электромагнитной индукции. При этом выяснилось, что получаемая энергия электричества напрямую связана со скоростью взаимного перемещения магнита и провода.

  • Очевидно, что частота является третьим параметром энергии электричества.

Трансформаторы

После открытия Фарадеем явления электромагнитной индукции были изобретены различные электрические машины, в том числе и преобразователи электрической энергии. Первыми из них стали трансформаторы, которые сделали возможной передачу энергии электричества по проводам на значительные расстояния. Оказалось, что переменное напряжение на концах обмотки катушки равномерно распределяется между её витками. На каждом витке получается одинаковое по величине напряжение.

Поэтому количество витков обмотки определит напряжение, которое можно использовать для питания новой электрической цепи. Выяснилось также и то, что дополнительный виток охватывающий сердечник катушки вне основной обмотки имеет на своих концах такое же напряжение, как и виток основной обмотки. Такие катушки, охватывающие общий магнитопровод, стали называть трансформаторами. Если все катушки при этом соединялись между собой в последовательную цепь, такое устройство назвали автотрансформатором.

Автотрансформатор при одинаковых параметрах преобразования электроэнергии оказывается эффективнее трансформатора, поскольку в нём существует электрическая связь между обмотками. Поэтому он может передать потребителю большую электрическую мощность. В трансформаторе между обмотками существует только электромагнитная связь.

Но эта особенность обеспечивает полную электрическую изоляцию обмоток друг от друга. По этой причине трансформаторы широко используются во всех электрических устройствах, питающихся от электрической сети для получения безопасного электропитания этих устройств. Трансформаторы позволяют изменять лишь напряжение и ток, оставляя их частоту без какого-либо изменения. В этом качестве они применяются до сих пор. А в дальних системах электроснабжения трансформаторы достигли огромных размеров. Один из таких агрегатов показан на изображении ниже:

Трансформатор

Но после появления трансформаторов проявилась ещё одна возможность преобразования электроэнергии.

Катушки

Оказалось, что любая катушка запасает энергию в электромагнитном поле. Оно существует некоторое время после того, как по обмотке катушки перестаёт течь электроток. А на концах обмотки катушки в течение этого времени продолжает существовать напряжение. Такое явление стали называть как ЭДС самоиндукции. Выяснилось также и то, что величина ЭДС самоиндукции зависит от скорости отключения электротока в катушке.

Катушка Румкорфа

Чем быстрее уменьшается ток, тем больше напряжение на концах обмотки. Такой преобразователь электроэнергии получил своё название по фамилии своего изобретателя и стал называться «катушкой Румкорфа», изображение которой показано ниже слева. На таком же принципе работает классическая система зажигания автомобильного бензинового двигателя.

Однако преобразовать частоту напряжения и тока длительное время можно было только при помощи вращения. Синхронный двигатель, который вращался с частотой, определяемой частотой питающего напряжения, вращал генератор. Для увеличения частоты можно было либо использовать повышающий обороты редуктор, либо увеличивать число полюсов генератора, либо и то и другое вместе. Аналогично решалась и проблема получения выпрямленного тока. Механические контакты, например, коллектора двигателя пропускали только одну половину периода тока. Эти импульсы поступали в общую электрическую цепь, и таким образом получался выпрямленный ток обоих полупериодов.

Определяющий вклад в развитие преобразования электроэнергии внесли электронные приборы. Они позволили создавать выпрямители и преобразователи частоты без подвижных частей, обеспечивая параметры электроэнергии недостижимые для устройств, созданных на механических принципах. Стало возможным создание мощных высокочастотных генераторов, именуемых инверторами. Увеличение частоты позволило в несколько раз уменьшить размеры трансформаторов.

Инверторы

Инверторы получили дальнейшее развитие с появлением мощных высоковольтных полупроводниковых приборов – транзисторов и тиристоров. С их появлением преобразование электроэнергии на высокой частоте охватило почти все устройства с источниками вторичного электропитания. Инверторные схемы стали широко применяться для электронных балластов газоразрядных ламп. При этом достигалось более высокое качество света при значительной экономии электроэнергии.

Преобразование электроэнергии

Наиболее весомым моментом в развитии преобразования электроэнергии стали инверторы и выпрямители для высоковольтных линий электропередачи. Такие схемы дальнего электроснабжения начали применяться достаточно давно с появлением ртутных вентилей – мощных специализированных электровакуумных приборов.

Затем они были вытеснены более эффективными тиристорами и транзисторами. Полупроводниковые преобразователи электроэнергии позволяют обеспечить передачу электрической мощности в 3,15 гигаватт/час на расстояние 2400 км в современной системе электроснабжения в Бразилии. За такими системами передачи электроэнергии будущее. ЛЭП работающие на постоянном токе лишены реактивного сопротивления и потерь электроэнергии, связанных с переменным напряжением и током.

В них нет и других процессов и явлений, очень мешающих совместной работе нескольких электрогенерирующих и передающих систем в единой схеме электроснабжения. Но трение и электромагнетизм не единственные процессы, которые используются для преобразования электроэнергии. Примерно в те же годы открытия явления электромагнитной индукции был обнаружен пьезоэлектрический эффект.

В результате нашлась группа минералов, а впоследствии были искусственно созданы материалы с пьезоэлектрическими свойствами. Эти свойства заключаются в преобразовании механического воздействия, приложенного к образцу пьезоэлектрического материала, в электрические импульсы. Но обратное преобразование электрических импульсов в механические деформации образца также возможно. На основе таких образцов можно изготовить трансформатор без обмоток и магнитных полей в сердечнике и вне его.

Такой трансформатор будет увеличивать приложенное напряжение во много раз при минимальных размерах и весе. Это будет просто керамическая пластина с припаянными проводками.

Трансформатор

При этом получаемая мощность не будет большой. Но выигрыш в размерах и себестоимости по сравнению с электромагнитным трансформатором будет существенной. Такие пьезоэлектрические трансформаторы применяются в источниках вторичного электропитания. Также все современные курильщики пользуются зажигалками, в которых искра создаётся миниатюрным пьезоэлектрическим трансформатором.

Дальнейшее развитие преобразователей электроэнергии это битва за увеличение частоты напряжения и тока. Этот процесс связан с необходимостью создания новых полупроводниковых приборов и материалов. В сочинениях некоторых писателей фантастов упоминается энергетический луч, используемый вместо ЛЭП. Возможно, их пророчества таки сбудутся.

Электротехника Ноябрь 27, 2016 admin в 12:25
22 717 0
Добавить отзыв